Vibration-based Autonomous Cable Monitoring System based on Domain Knowledge

*Seung-Seop Jin¹⁾, Youngsoo Park¹⁾, Dong-woo Seo¹⁾, Seunghoo Jeong²⁾, and Sung-Han Sim³⁾

 Department of Structural Engineering Research, KICT, Goyang, Korea
²⁾ Advanced Railroad Civil Engineering, KRRI, Ui-wang, Korea
³⁾ School of Civil, Architectural Engineering and Landscape Architecture, SKKU, Suwon, Korea

¹⁾ <u>seungsab@kict.re.kr</u>

ABSTRACT

This study presents a fully-automated peak-picking method for vibration-based autonomous cable monitoring to extract the modal frequencies reliably and flexibly without any prior setting and human manipulation. In a vibration-based method, peaks in Power Spectral Density (modal frequencies) are extracted by a peak-picking method. Then, tension force and damping ratio are estimated based on the extracted peaks. In this regard, several methods for automated peak-picking are implemented by selecting (1) peaks larger than a predefined threshold values from the PSD, (2) local maxima point a PSD within pre-defined frequency intervals, and (3) peaks detected by deep-learning-based objective detection. However, these methods still require human intervention and their optimal setting is case-dependent. To develop a fully-automated peak-picking method, the proposed method exploits a domain knowledge based on the cable dynamics of stay-cables. The experimental study was performed using real field data and it shows that the proposed method outperforms other methods in terms of accuracy, robustness and computational efficiency.

REFERENCES

- S.S. Jin et al. (2022), Fully automated peak-picking method for an autonomous staycable monitoring system in cable-stayed bridges, Autom. Constr. 126, 103628
- F. Scholkmann et al. (2012), An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals, Algorithms 5 (4), 588–603.
- H.G. Schulze et al. (2012), A small-window moving average-based fully automated baseline estimation method for Raman spectra, Appl. Spectrosc. 66 (7), 757–764.
- J. Rousseeuw et al. (1993), Alternatives to the median absolute deviation, J. Am. Stat. Assoc. 88 (424), 1273–1283

^{1, 2)}Ph. D

³⁾ Prof.